微博正文
User profile avatar
千凡_

erdos不等式✍️

全称为Erdos-Mordell(鄂尔多斯市—门德尔)不等式,简称E-M不等式。

内容介绍

设P是ΔABC内任意一点,P到ΔABC三边BC,CA,AB的距离分别为PD=p,PE=q,PF=r,记PA=x,PB=y,PC=z。则

x+y+z≥2*(p+q+r)

证法介绍1

因为P,E,A,F四点共圆,PA为直径,则有:EF=PA*sinA。

在ΔPEF中,据余弦定理得:

EF^2=q^2+r^2-2*q*r*cos(π-A)=q^2+r^2-2*q*r*cos(B+C)

=(q*sinC+r*sinB)^2+(q*cosC-r*cosB)^2≥(q*sinC+r*sinB)^2,

所以有 PA*sinA≥q*sinC+r*sinB,即

PA=x≥q*(sinC/sinA)+r*(sinB/sinA) (1)。

同理可得:

PB=y≥r*(sinA/sinB)+p*(sinC/sinB) (2),

PC=z≥p*(sinB/sinC)+q*(新浪/sinC) (3)。

(1)+(2)+(3)得:

x+y+z≥p*(sinB/sinC+sinC/sinB)+q*(simC/sinA+sinA/sinC)+r*(sinA/sinB+sinB/sinA)≥2*(p+q+r)。命题成立。

证法介绍2

设∠BP=2α,∠CPA=2β,∠APB=2γ,令它们内角平分线分别为:t1,t2,t3。则只需证明更强的不等式

x+y+z≥2*(t1+t2+t3)。

事实上,注意到内角平分线公式有:

t1=(2*y*z*cosα)/(y+z)≤(√y*z)*cosα,

同理可得: t2≤(√z*x)*cosβ,t3≤(√x*y)*cosγ。

由于α+β+γ=π,所以由嵌入不等式可得:

2*(t1+t2+t3)≤2*(√y*z)*cosα+2*(√z*x)*cosβ+2*(√x*y)*cosγ≤x+y+z。证毕。

证法介绍3

The proof of the inequality is based on the following

先给出一个引理

Lemma

引理

For the quantities x, y, z, p, q, r in ΔABC, we have ax ≥ br + cq, by ≥ ar + cp, and cz ≥ aq + bp.

在ΔABC中,对数值 x, y, z, p, q, r,恒有 ax ≥ br + cq, by ≥ ar + cp, cz ≥ aq + bp.

Proof of Lemma

下证引理成立:

For the proof we construct a trapezoid as shown. The diagram makes the first inequality ax ≥ br + cqobvious. The other two are shown similarly.

(That we do have a trapezoid follows from counting the angles at vertex A: they do sum up to 180°.)

由三角形两边之和大于第三边即可证引理成立。

The Erdös-Mordell Inequality

If O is a point within a triangle ABC whose distances to the vertices are x, y, and z, then

x + y + z ≥ 2(p + q + r).

回到原待证不等式。

Proof

证明:

From the lemma we have ax ≥ br + cq, by ≥ ar + cp, and cz ≥ aq + bp. Adding these three inequalities yields

x + y + z ≥ (b/a + a/b)r + (c/a + a/c)q + (c/b + b/c)p.

由引理得 x + y + z ≥ (b/a + a/b)r + (c/a + a/c)q + (c/b + b/c)p.

But the arithmetic mean-geometric mean inequality insures that the coefficients of p, q, and r are each at least 2, from which the desired result follows.

由均值不等式(AM-GM不等式)得p,q,r的系数 ≥ 2。

故待证不等式得证。

Observe that the three inequalities in the lemma are equalities if and only if O is the circumcenter of ΔABC, for in this case the trapezoids become rectangles.

观察引理中三个不等式取等号时当且仅当O是ΔABC的外心(此时梯形变成长方形)。

参考资料

Concert stage with colorful lighting and performance Concert stage with vibrant lighting effects
Concert video thumbnail
00:30
Concert video thumbnail
00:15
Official account avatar
郑州南站公司
转发47 评论23 赞322

Copyright © 1996-2025 DaHe Network Media. Group All Rights Reserved

京ICP备2023013984号

抖运营雅思百科